Multiple Integrals

Definition Let $R=[a, b] \times[c, d]=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$ be a closed rectangle and let f be a function defined on R. Then the double integral of f over R, denoted $\iint_{R} f d A$ or simply $\int_{R} f d A$, is defined by

$$
\begin{aligned}
& \iint_{R} f(x, y) d A= \lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \text { if the limit exists, } \\
& \Longleftrightarrow \quad \text { For any } \varepsilon>0 \text { there is an integer } N \text { such that } \\
& \text { if } m, n \geq N, \text { then }\left|\iint_{R} f(x, y) d A-\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A\right|<\varepsilon
\end{aligned}
$$

where

- the interval $[a, b]$ is divided into m subintervals $\left[x_{i-1}, x_{i}\right]$ of equal width $\Delta x=(b-a) / m$ and the interval $[c, d]$ is divided into n subintervals $\left[y_{j-1}, y_{j}\right]$ of equal width $\Delta y=(d-c) / n$,
- the rectangle R is divided into $m \times n$ subrectangles $R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ of equal area $\Delta A=\Delta x \Delta y$,
- $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ is an arbitrary point in $R_{i j}$ and $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$ is called a double Riemann sum of f on R.

Definition A function f is called integrable on R if f is bounded on R and the limit of double Riemann sum exists. [Recall that f is bounded on R if there is a constant M such that $|f(x, y)| \leq$ M for all $(x, y) \in R]$
Theorem Let f be a bounded function defined on $R=[a, b] \times[c, d]$. If f is continuous on $R=[a, b] \times[c, d]$ except on possibly a finite number of smooth curves, then f is integrable on R.
Fubini's Theorem If f is continuous on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

where $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$ and $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$ are called iterated integrals defined by

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

and $\int_{c}^{d} f(x, y) d y$ means that $f(x, y)$ is integrated with respect to y from $y=c$ to $y=d$ while x is held fixed (as a constant).
Examples Compute each of the following double integrals over the indicated rectangles.
(1.) $\iint_{R} 6 x y^{2} d A, R=[2,4] \times[1,2]$.
(2.) $\iint_{R} 2 x-4 y^{3} d A, R=[-5,4] \times[0,3]$.
(3.) $\iint_{R} x^{2} y^{2}+\cos (\pi x)+\sin (\pi y) d A, R=[-2,-1] \times[0,1]$.
(4.) $\iint_{R} \frac{1}{(2 x+3 y)^{2}} d A, R=[0,1] \times[1,2]$.
(5.) $\iint_{R} x e^{x y} d A, R=[-1,2] \times[0,1]$.

Definition Let $D \subset \mathbb{R}^{2}$ be a bounded subset, $f: D \rightarrow \mathbb{R}$ be a function defined on $D, R=$ $[a, b] \times[c, d]=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$ be a closed rectangle containing D, and let F be a function on R defined by

$$
F(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \in D \\ 0 & \text { if }(x, y) \in R \backslash D \text { i.e. }(x, y) \text { is in } R \text { but not in } D\end{cases}
$$

Then we say that f is integrable on D if F is integrable on $R=[a, b] \times[c, d]$. If F is integrable over R, then we define the double integral of f over D by

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A
$$

Example Let D be a plane region bounded between the graphs of two continuous functions of x, that is,

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\} \quad \text { where } h_{1}, h_{2} \text { are continuous on }[a, b] .
$$

In order to evaluate $\iint_{D} f(x, y) d A$, we choose a rectangle $R=[a, b] \times[c, d]$, and use the Fubini's Theorem to obtain that

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A=\int_{a}^{b} \int_{c}^{d} F(x, y) d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x .
$$

Theorem Let $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, where g_{1} and g_{2} are continuous functions on $[a, b]$. If f is a continuous function on D, then f is integrable on D with the integral of f on D given by

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x .
$$

Example Let D be a plane region bounded between the graphs of two continuous functions of y, that is,

$$
D=\left\{(x, y) \mid c \leq x \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}, \quad \text { where } h_{1}, h_{2} \text { are continuous on }[c, d] .
$$

Theorem Let $D=\left\{(x, y) \mid c \leq x \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, where h_{1} and h_{2} are continuous functions on $[c, d]$. If f is a continuous function on D, then f is integrable on D with the integral of f on D given by

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Examples

(1) Evaluate $\iint_{D} d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.
(2) Evaluate the iterated integral $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$.
(3) Evaluate $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$. [Hint: (2) and (3) have the same integration region $D=\{x \leq$ $y \leq 1,0 \leq x \leq 1\}=\{0 \leq x \leq y, 0 \leq y \leq 1\}]$
(4) Evaluate $\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} d y d x$. [Hint: the integration region $D=\{x \leq y \leq \pi / 2,0 \leq x \leq$ $\pi / 2\}=\{0 \leq x \leq y, 0 \leq y \leq \pi / 2\}]$

Properties of Double Integrals Let $D \subset \mathbb{R}^{2}$ be a bounded subset, let $f, g: D \rightarrow \mathbb{R}$ be integrable functions on D. Then

- $\iint_{D}[f(x, y)+g(x, y)] d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A$.
- $\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A$, where c is a constant.
- if $f(x, y) \geq g(x, y)$ for all $(x, y) \in D$, then

$$
\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A
$$

- if $D=D_{1} \cup D_{1}$, where D_{1} and D_{2} do not overlap except perhaps on their boundaries, then

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

- if $f(x, y)=1$ is integrable on D, then $\iint_{D} d A=A(D)$, the area of D.
- if $f(x, y)$ is integrable on D and if $m \leq f(x, y) \leq M$ for all $(x, y) \in D$, then

$$
m A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)
$$

Double Integrals in Polar Coordinates

Let P be a point in the $x y$-plane and let (x, y) and (r, θ) denote the rectangular and polar coordinates of p, respectively. Then (x, y) and (r, θ) are related by the equations

$$
r^{2}=x^{2}+y^{2}, \quad x=r \cos \theta, \quad y=r \sin \theta
$$

To compute the double integral $\iint_{R} f(x, y) d A$, where R is a polar region of the form

$$
R=\{(r, \theta) \mid 0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta \leq 2 \pi\}
$$

- we divide the interval $[a, b]$ into m subintervals $\left[r_{i-1}, r_{i}\right]$ of equal width $\Delta r_{i}=\Delta r=\frac{b-a}{m}$,
- we divide the interval $[\alpha, \beta]$ into n subintervals $\left[\theta_{j-1}, \theta_{j}\right]$ of equal width $\Delta \theta_{j}=\Delta \theta=\frac{\beta-\alpha}{n}$,
- we divide R into $m \times n$ subregions

$$
R_{i j}=\left\{(r, \theta) \mid r_{i-1} \leq r \leq r_{i}, \theta_{j-1} \leq \theta \leq \theta_{j}\right\}
$$

with the "center" of the coordinates

$$
r_{i}^{*}=\frac{r_{i-1}+r_{i}}{2}, \quad \theta_{j}^{*}=\frac{\theta_{j-1}+\theta_{j}}{2} \Longleftrightarrow\left(x_{i}^{*}, y_{j}^{*}\right)=\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right)
$$

and of the area

$$
\Delta A_{i j}=A\left(R_{i j}\right)=\frac{1}{2} r_{i}^{2}\left(\theta_{j}-\theta_{j-1}\right)-\frac{1}{2} r_{i-1}^{2}\left(\theta_{j}-\theta_{j-1}\right)=\frac{\left(r_{i}+r_{i-1}\right)\left(r_{i}-r_{i-1}\right)}{2} \Delta \theta=r_{i}^{*} \Delta r \Delta \theta
$$

Therefore we have

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) \Delta A_{i j} \\
& =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r \Delta \theta \\
& =\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Theorem If f is continuous on $R=\{(r, \theta) \mid 0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta\}$, where $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Theorem Let $h_{2}(\theta) \geq h_{1}(\theta) \geq 0$ be continuous for each $\theta \in[\alpha, \beta]$. If f is continuous on a polar region of the form

$$
D=\left\{(r, \theta) \mid 0 \leq \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\},
$$

then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Examples

(1) Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d A$, where R is the region in the upper half-plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
(2) Evaluate $\iint_{R} e^{-x^{2}-y^{2}} d A$, where $R=(-\infty, \infty) \times(-\infty, \infty)=\{(x, y) \mid-\infty<x, y<\infty\}$.
(3) Evaluate $\int_{-\infty}^{\infty} e^{-x^{2}} d x$. Hint: Since $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\int_{-\infty}^{\infty} e^{-y^{2}} d y$, and x, y are independent variables, we have

$$
\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

Definition Let $D \subset \mathbb{R}^{2}$ be a bounded subset with area $A(D)=\iint_{D} d A$, and let $f: D \rightarrow \mathbb{R}$ be an integrable function on D. Then the average value of f over D is defined to be

$$
f_{\text {ave }}=\frac{1}{A(D)} \iint_{D} f(x, y) d A
$$

Theorem Let $B_{r}(p) \subset \mathbb{R}^{2}$ be a disk of radius $r>0$ and center $p \in \mathbb{R}^{2}$, and let $f: B_{r}(p) \rightarrow \mathbb{R}$ be a continuous function on $B_{r}(p)$. Then

$$
\lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} f(x, y) d A=f(p)
$$

Proof Since

- $\frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} d A=1$ for all $\rho>0 \Longrightarrow \lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} d A=1$,
- $f(p)=f(p) \cdot 1=f(p) \cdot \lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} d A=\lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} f(p) d x$,
- f is continuous at $p \Longleftrightarrow \lim _{(x, y) \rightarrow p} f(x, y)=f(p)$, that is, for any $\varepsilon>0$, there is a $0<\delta<r$ such that

$$
\text { if }(x, y) \in B_{\delta}(p) \text { then }|f(x, y)-f(p)|<\varepsilon
$$

so for all $0<\rho<\delta$, we have

$$
\begin{aligned}
\left|\lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} f(x, y) d A-f(p)\right| & =\left|\lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)}[f(x, y)-f(p)] d A\right| \\
& \leq \lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)}|f(x, y)-f(p)| d A \\
& <\lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} \varepsilon d A \quad \text { since }(x, y) \in B_{\rho}(p) \subset B_{\delta}(p) \\
& =\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
\lim _{\rho \rightarrow 0} \frac{1}{A\left(B_{\rho}(p)\right)} \iint_{B_{\rho}(p)} f(x, y) d A=f(p)
$$

Surface Area

Let $S=\{(x, y, z) \mid z=f(x, y)$ and $(x, y) \in D\}$ be a surface with equation $z=f(x, y)$, where f has continuous partial derivatives. For simplicity in deriving the surface area formula, we assume that $f(x, y) \geq 0$ and the domain D of f is a rectangle.

- Divide the rectangle D into small rectangles $R_{i j}$ with area $\Delta A=\Delta x \Delta y$.
- If $\left(x_{i}, y_{j}\right)$ is the corner of $R_{i j}$ closest to the origin, let $P_{i j}\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right)$ be the point on S directly above it.
- Approximate the area $\Delta S_{i j}$ of the part of S that lies directly above $R_{i j}$ by the area $\Delta T_{i j}$ of the part of the tangent plane (a parallelogram) to S at $P_{i j}$ lies directly above $R_{i j}$.
- Define the surface area of S to be

$$
A(S)=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \Delta T_{i j} \quad \text { if the limit exists, }
$$

- Apply the linear (or tangent) approximations at $\left(x_{i}, y_{j}\right)$ to get

$$
\begin{aligned}
& \left(x_{i}+\Delta x, y_{j}, f\left(x_{i}+\Delta x, y_{j}\right)\right)-\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right) \approx\left(\Delta x, 0, f_{x}\left(x_{i}, y_{j}\right) \Delta x\right)=\mathbf{a} \\
& \left(x_{i}, y_{j}+\Delta y, f\left(x_{i}, y_{j}+\Delta y\right)\right)-\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right) \approx\left(0, \Delta y, f_{y}\left(x_{i}, y_{j}\right) \Delta y\right)=\mathbf{b} \\
& \\
& \qquad \begin{aligned}
\Delta T_{i j} & =|\mathbf{a} \times \mathbf{b}|=\left|\left(-f_{x}\left(x_{i}, y_{j}\right),-f_{y}\left(x_{i}, y_{j}\right), 1\right) \Delta x \Delta y\right| \\
& =\sqrt{\left[f_{x}\left(x_{i}, y_{j}\right)\right]^{2}+\left[f_{y}\left(x_{i}, y_{j}\right)\right]^{2}+1} \Delta x \Delta y
\end{aligned}
\end{aligned}
$$

So, if f_{x} and f_{y} are continuous on D, then the area of the surface with equation $z=f(x, y)$, $(x, y) \in D$, is given by

$$
A(S)=\iint_{D} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A
$$

Example Find the surface area of the part of the surface $z=x^{2}+2 y+2$ that lies above the triangular region $T=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x\}$ in the $x y$-plane with vertices $(0,0),(1,0)$, and $(1,1)$.

Triple Integrals

Definition Let $B=[a, b] \times[c, d] \times[r, s]=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\right\}$ be a closed rectangular box and let f be a function defined on B. Then the triple integral of f over B, denoted $\iiint_{B} f d V$ or simply $\int_{B} f d V$, is defined by

$$
\iiint_{B} f(x, y, z) d V=\lim _{\ell, m, n \rightarrow \infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V \quad \text { if the limit exists, }
$$

\Longleftrightarrow For any $\varepsilon>0$ there is an integer N such that if $\ell, m, n \geq N$, then

$$
\left|\iiint_{B} f(x, y) d V-\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V\right|<\varepsilon
$$

where

- the interval $[a, b]$ is divided into ℓ subintervals $\left[x_{i-1}, x_{i}\right]$ of equal width $\Delta x=(b-a) / \ell$, the interval $[c, d]$ is divided into m subintervals $\left[y_{j-1}, y_{j}\right]$ of equal width $\Delta y=(d-c) / m$, and the interval $[r, s]$ is divided into n subintervals $\left[z_{k-1}, z_{k}\right]$ of equal width $\Delta z=(s-r) / n$,
- the rectangular box B is divided into $\ell \times m \times n$ sub-boxes $B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times$ [z_{k-1}, z_{k}] of equal volume $\Delta V=\Delta x \Delta y \Delta z$,
- $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right)$ is an arbitrary point in $B_{i j k}$ and $\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V$ is called a triple Riemann sum of f on B.

Fubini's Theorem If f is continuous on $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\begin{aligned}
\iiint_{B} f(x, y, z) d V & =\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) d z d y d x=\int_{a}^{b} \int_{r}^{s} \int_{c}^{d} f(x, y, z) d y d z d x \\
& =\int_{c}^{d} \int_{r}^{s} \int_{a}^{b} f(x, y, z) d x d z d y=\int_{c}^{d} \int_{a}^{b} \int_{r}^{s} f(x, y, z) d z d x d y \\
& =\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z=\int_{r}^{s} \int_{a}^{b} \int_{c}^{d} f(x, y, z) d y d x d z
\end{aligned}
$$

Example (a) If $E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}$, where u_{1} and u_{2} are continuous functions on D, and $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, where g_{1} and g_{2} are continuous functions on $[a, b]$, and if f is continuous on E, then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d y d x
$$

Example (b) If $E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}$, where u_{1} and u_{2} are continuous functions on D, and $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, where h_{1} and h_{2} are continuous functions on $[c, d]$, and if f is continuous on E, then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d x d y
$$

Example (c) If $E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\}$, where u_{1} and u_{2} are continuous functions on D, then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A
$$

Examples

1. Evaluate $\iiint_{B} x y z^{2} d V$, where $B=\{(x, y, z) \mid 0 \leq x \leq 1,-1 \leq y \leq 2,0 \leq z \leq 3\}$.

2. Evaluate $\iiint_{E} z d V$, where E is the solid in the first octant bounded by the surface $z=12 x y$ and the planes $y=x, x=1$. [Hint: $E=\{0 \leq x \leq 1,0 \leq y \leq x, 0 \leq z \leq 12 x y\}$.]
3. Express the iterated integral $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) d z d y d x$ as a triple integral and rewrite it in the following order.

(a) Integrate first with respect to x, then z, and then y. [Solution: $\int_{0}^{1} \int_{0}^{y} \int_{\sqrt{z}}^{1} f(x, y, z) d x d z d y$]
(b) Integrate first with respect to y, then x, and then z. [Solution: $\int_{0}^{1} \int_{\sqrt{z}}^{1} \int_{0}^{x^{2}} f(x, y, z) d y d x d z$]
4. Use a triple integral to find the volume of the tetrahedron T bounded by the planes $x+$ $2 y+z=2, x=2 y, x=0$, and $z=0$. [Solution: $V(T)=\int_{0}^{1} \int_{x / 2}^{1-x / 2} \int_{0}^{2-x-2 y} d z d y d x$]

5. Let E be a solid lies within the cylinder $x^{2}+y^{2}=1$, to the right of the $x z$-plane, below the plane $z=4$, and above the paraboloid $z=1-x^{2}-y^{2}$, and let $k>0$ be a constant and let $\rho(x, y, z)=k \sqrt{x^{2}+y^{2}}$ be the density at $(x, y, z) \in E$.
In terms of the cylindrical coordinates $(r, \theta, z), E$ is given by

$$
E=\left\{(r, \theta, z) \mid 0 \leq \theta \leq \pi, 0 \leq r \leq 1,1-r^{2} \leq z \leq 4\right\},
$$

and the (total) mass $m(E)$ of E is given by

$$
m(E)=\iiint_{E} \rho(x, y, z) d V=\iiint_{E} k r d V=\int_{0}^{\pi} \int_{0}^{1} \int_{1-r^{2}}^{4} k r^{2} d z d r d \theta
$$

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point $P=(x, y, z) \in \mathbb{R}^{3}$ are defined by the equations

$$
x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi \Longrightarrow \rho^{2}=x^{2}+y^{2}+z^{2},
$$

where $\rho \geq 0$ is the distance from P to the origin $O=(0,0,0), 0 \leq \phi \leq \pi$ is the angle from positive z-axis to $\overline{O P}$, and $0 \leq \theta \leq 2 \pi$ is the angle from positive x-axis to the projection of $\overline{O P}$ onto the $x y$-plane.

Triple Integrals in Spherical Coordinates

To define $\iiint_{E} f(x, y, z) d V$ in the spherical coordinates, we divide E into smaller spherical wedges $E_{i j k}$ by means of equally spaced spheres $\rho=\rho_{i}$, half-planes $\theta=\theta_{j}$ and half-cones $\phi=\phi_{k}$, so that $E_{i j k}$ is approximately a rectangular box with dimensions

- $\Delta \rho=\rho_{i+1}-\rho_{i}$,
- $\rho_{i} \Delta \phi=\operatorname{arc}$ of a circle with radius ρ_{i}, angle $\Delta \phi$,
- $\rho_{i} \sin \phi_{k} \Delta \theta=\operatorname{arc}$ of a circle with radius $\rho_{i} \sin \phi_{k}$ and angle $\Delta \theta$.

Then the volume $\Delta V_{i j k}$ of $E_{i j k}$ is approximately

$$
\Delta V_{i j k} \approx(\Delta \rho)\left(\rho_{i} \Delta \phi\right)\left(\rho_{i} \sin \phi_{k} \Delta \theta\right)=\rho_{i}^{2} \sin \phi_{k} \Delta \rho \Delta \theta \Delta \phi
$$

and by choosing a point $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \in E_{i j k}$,

$$
\begin{aligned}
& \iiint_{E} f(x, y, z) d V \\
= & \lim _{\ell, m, n \rightarrow \infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k} \\
= & \lim _{\ell, m, n \rightarrow \infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\rho_{i}^{*} \sin \tilde{\phi}_{k} \cos \tilde{\theta}_{j}, \rho_{i}^{*} \sin \tilde{\phi}_{k} \sin \tilde{\theta}_{j}, \rho_{i}^{*} \cos \tilde{\phi}_{k}\right) \rho_{i}^{2} \sin \phi_{k} \Delta \rho \Delta \theta \Delta \phi
\end{aligned}
$$

Theorem If E is a spherical wedge

$$
E=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

where $a \geq 0, \beta-\alpha \leq 2 \pi$ and $d-c \leq \pi$, and if f is a continuous function on E, then

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

Example Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$. [Hint: $E=\{(\rho, \theta, \phi) \mid 0 \leq \theta \leq 2 \pi, 0 \leq$ $\phi \leq \pi / 4,0 \leq \rho \leq \cos \phi\}$ and $V(E)=\pi / 8$.]

Change of Variables in Multiple Integrals

Recall that

- if f is a continuous function defined on $[a, b], g:[c, d] \rightarrow[a, b]$ is a continuously differentiable function with $a=g(c), b=g(d)$, and $g^{\prime}(u)>0$ for all $u \in(c, d)$, then

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u \Longleftrightarrow \int_{a}^{b} f(x) d x=\int_{c}^{d} f(x(u)) \frac{d x}{d u} d u
$$

- S is a bounded closed region in the $r \theta$-plane that corresponds to the region R in the $x y$-plane by the transformation

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta \quad \text { for all }(r, \theta) \in S,
$$

and if f is a continuous function defined on R, then

$$
\iint_{R} f(x, y) d x d y=\iint_{S} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Change of Variables in Multiple Integrals If S is a bounded closed region in the $u v$-plane that corresponds to the region R in the $x y$-plane by a continuously differentiable, one-to-one onto transformation $T: S \rightarrow R$ defined by

$$
(x, y)=T(u, v)=(x(u, v), y(u, v)) \quad \text { for all }(u, v) \in S
$$

Suppose that f is a continuous function defined on R, then

$$
\iint_{R} f(x, y) d x d y=\iint_{T(S)} f(x, y) d x d y=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

where $J_{T}(u, v)=\frac{\partial(x, y)}{\partial(u, v)}$ is called the Jacobian of T at (u, v) which is defined by

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\text { the determinant of }\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right) .
$$

Area of a Parametrized Surface When $R=r(S) \subset \mathbb{R}^{3}$ is a surface parametrized by the vector function $r: S \rightarrow R$, we can approximate the image region $R=r(S)$ by a parallelogram determined by the secant vectors

$$
a=r\left(u_{0}+\Delta u, v_{0}\right)-r\left(u_{0}, v_{0}\right), \quad b=r\left(u_{0}, v_{0}+\Delta v\right)-r\left(u_{0}, v_{0}\right) .
$$

Since

$$
\begin{aligned}
& r_{u}=\lim _{\Delta u \rightarrow 0} \frac{r\left(u_{0}+\Delta u, v_{0}\right)-r\left(u_{0}, v_{0}\right)}{\Delta u} \Longrightarrow r\left(u_{0}+\Delta u, v_{0}\right)-r\left(u_{0}, v_{0}\right) \approx \Delta u r_{u}, \\
& r_{v}=\lim _{\Delta u \rightarrow 0} \frac{r\left(u_{0}, v_{0}+\Delta v\right)-r\left(u_{0}, v_{0}\right)}{\Delta u} \Longrightarrow r\left(u_{0}, v_{0}+\Delta v\right)-r\left(u_{0}, v_{0}\right) \approx \Delta v r_{v}
\end{aligned}
$$

we can approximate R by a parallelogram determined by the vectors $\Delta u r_{u}$ and $\Delta v r_{v}$ shown in the following
Therefore we can approximate the area of R by the area of this parallelogram

$$
\left|\left(\Delta u r_{u}\right) \times\left(\Delta v r_{v}\right)\right|=\left|r_{u} \times r_{v}\right| \Delta u \Delta v
$$

where the cross product $r_{u} \times r_{v}$ is given by

$$
r_{u} \times r_{v}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & 0 \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & 0
\end{array}\right|=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right| \mathrm{k}=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \mathrm{k}
$$

and the determinant that arises in this calculation is called the Jacobian of the transformation.

Examples

(1) Evaluate

$$
\iint_{E} e^{\frac{x-y}{x+y}} d A, \quad \text { where } E=\{(x, y) \mid x \geq 0, y \geq 0, x+y \leq 1\} .
$$

$$
\xrightarrow[y=\frac{1}{2}(v-u)]{x=\frac{1}{2}(u+v)}
$$

Solution Let $u=x-y, v=x+y$. Then $x=\frac{u+v}{2}, y=\frac{v-u}{2}$ and since $(x, y) \in R$ when

$$
x \geq 0, y \geq 0 \text { and } x+y \leq 1 \Longleftrightarrow u+v \geq 0, v-u \geq 0 \text { and } 0 \leq v \leq 1
$$

If we set

$$
S=\{(u, v) \mid u+v \geq 0, v-u \geq 0,0 \leq v \leq 1\}=\{(u, v) \mid u \geq-v, v \geq u, 0 \leq v \leq 1\}
$$

we can define $T: S \rightarrow R$ by

$$
(x, y)=T(u, v)=\left(\frac{u+v}{2}, \frac{v-u}{2}\right) \quad \text { for each }(u, v) \in S
$$

Since

$$
J_{T}(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{2} \Longrightarrow\left|J_{T}(u, v)\right|=\frac{1}{2}
$$

we have

$$
\begin{aligned}
\iint_{R} e^{\frac{x-y}{x+y}} d A & =\iint_{S} e^{\frac{x(u, v)-y(u, v)}{x(u, v)+y(u, v)}}\left|J_{T}(u, v)\right| d A=\int_{0}^{1} \int_{-v}^{v} e^{u / v} \frac{1}{2} d u d v \\
& =\left.\int_{0}^{1}\left(\frac{v}{2} e^{u / v}\right)\right|_{u=-v} ^{u=v} d v=\int_{0}^{1} \frac{v}{2}\left(e-\frac{1}{e}\right) d v \\
& =\left.\frac{v^{2}}{4}\left(e-\frac{1}{e}\right)\right|_{0} ^{1}=\frac{1}{4}\left(e-\frac{1}{e}\right) .
\end{aligned}
$$

(2) Find the volume V inside the paraboloid $z=x^{2}+y^{2}$ for $0 \leq z \leq 1$.

Solution Using vertical slices, we see that

$$
V=\iint_{R}(1-z) d A=\iint_{R}\left(1-\left(x^{2}+y^{2}\right)\right) d A, \text { where } R=\left\{(x, y) \mid 0 \leq x^{2}+y^{2} \leq 1\right\} .
$$

If we let $S=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}$ and let $T: S \rightarrow R$ be defined by

$$
(x, y)=T(r, \theta)=(r \cos \theta, r \sin \theta) \text { for each }(r, \theta) \in S
$$

then

$$
J_{T}(r, \theta)=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \Longrightarrow\left|J_{T}(r, \theta)\right|=r,
$$

and

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right)\left|J_{T}(r, \theta)\right| d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{3}\right) d r d \theta=\left.\int_{0}^{2 \pi}\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{4} d \theta=\frac{\pi}{2}
\end{aligned}
$$

(3) Find the volume V inside the cone $z=\sqrt{x^{2}+y^{2}}$ for $0 \leq z \leq 1$.

Solution Using vertical slices, we see that

$$
V=\iint_{R}(1-z) d A=\iint_{R}\left(1-\sqrt{\left.x^{2}+y^{2}\right)}\right) d A, \text { where } R=\left\{(x, y) \mid 0 \leq x^{2}+y^{2} \leq 1\right\} .
$$

If we let $S=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}$ and let $T: S \rightarrow R$ be defined by

$$
(x, y)=T(r, \theta)=(r \cos \theta, r \sin \theta) \quad \text { for each }(r, \theta) \in S
$$

then

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{1}(1-r)\left|J_{T}(r, \theta)\right| d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{2}\right) d r d \theta=\left.\int_{0}^{2 \pi}\left(\frac{r^{2}}{2}-\frac{r^{3}}{3}\right)\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{6} d \theta=\frac{\pi}{3}
\end{aligned}
$$

(4) For $a>0$, find the volume V inside the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Solution Let

$$
\begin{aligned}
& S=\{(\rho, \phi, \theta) \mid 0 \leq \rho \leq a, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi\} \\
& R=\left\{(x, y, z) \mid 0 \leq x^{2}+y^{2}+z^{2} \leq a^{2}\right\}
\end{aligned}
$$

and for each $(\rho, \phi, \theta) \in S$ let $T: S \rightarrow R$ be defined by

$$
(x, y, z)=T(\rho, \phi, \theta)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) .
$$

Then

$$
\begin{aligned}
J_{T}(\rho, \phi, \theta) & =\left|\begin{array}{lll}
\frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\
\frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta}
\end{array}\right|=\left|\begin{array}{ccc}
\sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right| \\
& =\cos \phi\left[\rho^{2} \sin \phi \cos \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right]+\rho \sin \phi\left[\rho \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right] \\
& =\rho^{2} \sin \phi\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=\rho^{2} \sin \phi,
\end{aligned}
$$

and

$$
\begin{aligned}
V & =\iiint_{S} d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a}\left|J_{T}(\rho, \phi, \theta)\right| d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{\rho^{3}}{3}\right)\right|_{0} ^{a} \sin \phi d \phi d \theta=\left.\int_{0}^{2 \pi} \frac{a^{3}}{3}(-\cos \phi)\right|_{0} ^{\pi} d \theta=\int_{0}^{2 \pi} \frac{2 a^{3}}{3} d \theta \\
& =\left.\frac{2 a^{3} \theta}{3}\right|_{0} ^{2 \pi}=\frac{4 \pi a^{3}}{3}
\end{aligned}
$$

