Calculus Study Guide 13 Spring 2022

Multiple Integrals

Definition Let R = [a,b] x [c,d] = {(z,y) € R* |a <2 < b, ¢ <y < d} be a closed rectangle

and let f be a function defined on R. Then the double integral of f over R, denoted / / fdA
R

or simply / fdA, is defined by
JR

//Rf(x, y)dA = m}lriglooz Z [z, yi;)AA if the limit exists,

i=1 j=1
<= For any € > 0 there is an integer N such that

if m, n > N, then |// f(z,y)dA — ZZf(xfj,y;‘j)AA\ <e
R i=1 j=1
where
e the interval [a,b] is divided into m subintervals [z; 1, x;] of equal width Az = (b — a)/m
and the interval [c, d] is divided into n subintervals [y;_1, y;] of equal width Ay = (d —¢)/n,
e the rectangle R is divided into m x n subrectangles R;; = [x;_1, z;] X [yj_1,y;] of equal area

AA = AzAy,

e (7j;,y;;) is an arbitrary point in R;; and Z Z f(x;,yi;)AA is called a double Riemann

i=1 j=1
sum of f on R.
v
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Definition A function f is called integrable on R if f is bounded on R and the limit of double
Riemann sum exists. [Recall that f is bounded on R if there is a constant M such that |f(z,y)| <
M for all (z,y) € R]

Theorem Let f be a bounded function defined on R = [a,b] X [c,d]. If f is continuous on
R = [a, b] X [c,d] except on possibly a finite number of smooth curves, then f is integrable on R.

Fubini’s Theorem If f is continuous on R = [a,b] X [¢,d], then

//Rf(x’y)dA:/ab/cdf(fl%y)dydﬂ?:/Cd/abf(a:,y)da:dy,
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b pd d b
where / / f(z,y) dy dz and / / f(z,y) dx dy are called iterated integrals defined by

/ab/cdﬂx,y)dydx:/ab (/jf(ac,y)dy) da

and / f(z,y) dy means that f(z,y) is integrated with respect to y from y = ¢ to y = d while

z is held fixed (as a constant).

Examples Compute each of the following double integrals over the indicated rectangles.

L) //RGa:deA,R:[QA]x[l,Q].
2.) //2m—4y3dA,R:[—5,4]><[O,3].

// 2%y + cos(mx) + sin(ry) dA, R = [-2,—1] x [0,1].

1) //RmdA,R—[O,l] x [1,2].

5.) //RxewdA, R=1[-1,2] x [0,1].

Definition Let D C R? be a bounded subset, f : D — R be a function defined on D, R =
[a,0] X [e,d] = {(x,y) €ER* |a <z < b, c <y <d} be a closed rectangle containing D, and let
F' be a function on R defined by

Fle.y) = flry) it (z,y) € D
’ 0 if (z,y) € R\ D ie. (r,y)is in R but not in D

Then we say that f is integrable on D if F'is integrable on R = [a,b] x [c,d]. If F is integrable
over R, then we define the double integral of f over D by

/Df(-’ff,y)dz‘l://};F(m,y)dA.

Example Let D be a plane region bounded between the graphs of two continuous functions of
x, that is,

D={(x,y)|a<zx<b, gi(r) <y <gs(x)} where hy, hy are continuous on [a, b].
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y=g-(x)

@

y=gi(x)

In order to evaluate / / f(z,y) dA, we choose a rectangle R = [a, b] X [c, d], and use the Fubini’s
D
Theorem to obtain that

Y=g2()

] — v

92(23
/fxydA // (z,y)dA = // xydydz'—// f(z,y) dy dz.
g1(x)

Theorem Let D = {(z,y) | a < x < b, gi(z) <y < go(z)}, where g; and gy are continuous
functions on [a, b]. If f is a continuous function on D, then f is integrable on D with the integral

of f on D given by
//fxydA // flz,y) dy dz.

Example Let D be a plane region bounded between the graphs of two continuous functions of
y, that is,

D={(z,y) | c<x<d, hi(y) <z < hs(y)}, where hy, hy are continuous on [c, d].

d-——— )
,\'=/11(B\'=h3(y) x=hy)| D ;.\'=]13(y) x=h(y) xX=hy(y)
el

Theorem Let D = {(z,y) | ¢ <z < d, hi(y) < z < hs(y)}, where hy and hy are continuous
functions on [c, d]. If f is a continuous function on D, then f is integrable on D with the integral

of f on D given by
d  rha(y)
// f(:v,y)dAzf / flz,y) dx dy.
D c hi(y)
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Examples

(1) Evaluate // dA, where D is the region bounded by the parabolas y = 22% and y = 1+ 22.
D

11
(2) Evaluate the iterated integral / / sin(y?) dy dz.
0 x

11
(3) Evaluate ¢’ dydz. [Hint: (2) and (3) have the same integration region D = {z <

0 T
y<1,0<2<1}={0<z<y 0<y <1}

w/2  pw/2 siny
(4) Evaluate / dy dz. [Hint: the integration region D = {x <y <7/2, 0 <z <
0 T Yy
)2} ={0<x <y, 0<y < 7m/2}]

Properties of Double Integrals Let D C R? be a bounded subset, let f, g : D — R be
integrable functions on D. Then

"//ff@ay)+gtuyﬂdA==/yﬁf@xy)¢4+l[/sﬂ$JDdA
[/qmycm_c[/fxydAwmmcmammwm

o if f(x,y) > g(x,y) for all (z,y) € D, then

/ fxydA>// g(z,y)d

e if D= D;UD;, where D; and D, do not overlap except perhaps on their boundaries, then

//Df(x’y)dA:/le(xv3/>dA+/D2f(:C,y)dA

e if f(x,y) =1 is integrable on D, then // dA = A(D), the area of D.
D
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o if f(x,y) is integrable on D and if m < f(z,y) < M for all (z,y) € D, then
mA(D) < / / F,y)dA < MA(D).
D

Double Integrals in Polar Coordinates

Let P be a point in the xy-plane and let (z,y) and (r,0) denote the rectangular and polar
coordinates of p, respectively. Then (z,y) and (r,8) are related by the equations

r? =2 +9% x=rcosh, y=rsin.

To compute the double integral / / f(z,y) dA, where R is a polar region of the form
R

R={(r0)]0<a<r<b a<l<p<2r}

P(r,0) =P(x,y)

O X X 0

h—
e we divide the interval [a, b] into m subintervals [r;_1,7;] of equal width Ar; = Ar = a’
m
e we divide the interval [, 5] into n subintervals [#;_1, 6;] of equal width Af; = Af = - a,
n
e we divide R into m x n subregions
Rij ={(r,0) | riii <r <y, 0,10 <0 <05}
with the “center” of the coordinates
i i 01 +0; .
ri = Tima 7T 12—1—7" , 0= e ) 12+ ! = (z7,y;) = (] cos 7,1 sin07)
and of the area
1 1 T+ Tri_ Ty —Ti— %
AAy = A(R;) = 571‘2(93' —0;1) — 5’”1‘2—1(91 —0j-1) = ( 1) Unp— ri ArAg
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0=0,
0=0;

Therefore we have

//Rf(x,y) dA = m,l}LIEooZ Z f(ricos0,risin0;) AA;;

i=1 j=1

= Jlim Z > f(r; cos O, sin07) ry Ar Af

i=1 j=1

8 b
= //f(rcos@,rsin&)rdrd@

Theorem If f is continuous on R = {(r,0) |0 <a <r <b, a <0 < B}, where 0 < f—a < 27,

then 5
// f(:c,y)dA:/ / f(rcos@,rsin®)rdrdd.
R «a a

Theorem Let hy(6) > hy(6) > 0 be continuous for each 6 € [a, 5]. If f is continuous on a polar
region of the form

D={(r0)|0<a<0<p ) <r<h)},

B rha(9)
// f(x,y)dA:/ / f(rcos@,rsin®)rdrd.
D a Jhi(0)

then

0=p r=h,(0) YA
A Gty =4
D -

/ s

/ /R | ‘
/_/ g " 0=a P

//‘Tl

0 r=h,(6) ) X
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Examples

(1) Evaluate / / (3z + 4y®) dA, where R is the region in the upper half-plane bounded by the
R
circles 22 + 4> = 1 and 2* + ¢ = 4.
(2) Evaluate // e~ ¥ dA, where R = (—00,00) X (—00,00) = {(z,y) | —00 < &, y < o0}
R

(3) Evaluate e~ dz. Hint: Since / e dr = / eV’ dy, and z, y are independent

—00 —00 o0

variables, we have

0 2 0 0 00 0
</ e~ d:v) = (/ e dzx) (/ eV’ dy) :/ / eV dx dy

Definition Let D C R? be a bounded subset with area A(D) = // dA, and let f: D — R be

D
an integrable function on D. Then the average value of f over D is defined to be

Jave = ﬁ//,; f(z,y)dA

Theorem Let B,(p) C R? be a disk of radius > 0 and center p € R? and let f : B,(p) — R
be a continuous function on B,(p). Then

1
m A — ,
;lg% A(B,(p)) //Bp(p) fle.y)d /(o)
Proof Since

/| 15,0 s
° —— dA—lforallp>0:>h dA =1,
A(B,(p) J )5, )

-ﬂmzf@y1:ﬂ>ggA /LpdA_?%MB@»LAﬁ@”%

e [ is continuous at p <= M hm f(a: y) = f(p), that is, for any € > 0, thereisa 0 < <r
such that

if (z,y) € Bs(p) then |f(z,y) — f(p)| <&,

/1)15%14 //B flz.y) = f(p)] dA

< I dA

< plg[l)A //Bp(p) z,y) = f(p)l

< lim—// edA since (z,y) € B,(p) C Bs(p)
Bp(p

so for all 0 < p < 4, we have

) 1
Egz@mm/lmﬁ@wMA—ﬂm

p—0 A
Since € > 0 is arbitrary, we have

,lfi%A //Bp flz,y)dA = f(p).
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Surface Area

Let S ={(z,v,2) | z = f(z,y) and (z,y) € D} be a surface with equation z = f(z,y), where f
has continuous partial derivatives. For simplicity in deriving the surface area formula, we assume
that f(z,y) > 0 and the domain D of f is a rectangle.

ZA

e Divide the rectangle D into small rectangles /7;; with area AA = Az/Ay.

o If (x;,y;) is the corner of /7;; closest to the origin, let P,;(x;,y;, f(zi,y;)) be the point on S
directly above it.

e Approximate the area AS;; of the part of S that lies directly above /7;; by the area AT;; of
the part of the tangent plane (a parallelogram) to S at P;; lies directly above 7.

e Define the surface area of S to be

A(S) = mlglrgoo Z Z AT;;  if the limit exists,

i=1 j=1

e Apply the linear (or tangent) approximations at (x;,y;) to get

(w5, 95 + Ay, f(xi,y; + Ay)) — (26,95, f(i,95)) = (0, Ay, fy(75,y;)Ay) = b,

Aﬂj = |a X bl = |(_f$('1:iayj)’ _fy(l'i,yj), 1) A:L‘Ay|
= \/[fx(:rzz-, y)2 + [fy(zi, y;))2 + 1 Az Ay,

So, if f, and f, are continuous on D, then the area of the surface with equation z = f(z,y),
(x,y) € D, is given by

AS) = [[ iap+ epr+1as

Example Find the surface area of the part of the surface z = 2® + 2y + 2 that lies above the
triangular region 7' = {(z,y) | 0 <z <1, 0 <y < z} in the xy-plane with vertices (0,0), (1,0),
and (1,1).
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Triple Integrals
Definition Let B = [a,b] x [c,d] x [r,s] = {(2,y,2) ER* |a <2 <b c<y<d,r<z<s}be
a closed rectangular box and let f be a function defined on B. Then the triple integral of f over

B, denoted / / / fdV or simply / fdV, is defined by
B B

L m n
///B f(z,y,2)dV = Z,W},iranHooZ Z Zf(x;‘jk, Yisks 2ij) AV if the limit exists,

i=1 j=1 k=1
<= For any € > 0 there is an integer N such that if £, m, n > N, then

£ m n
YIRS 2 ) MCTRERINGES

i=1 j=1 k=1
where

e the interval [a,b] is divided into ¢ subintervals [z;_1, x;] of equal width Az = (b — a)/¢, the
interval [c, d] is divided into m subintervals [y;_1,y;] of equal width Ay = (d — ¢)/m, and
the interval [r, s is divided into n subintervals [z;_1, x| of equal width Az = (s —r)/n,

e the rectangular box B is divided into ¢ x m x n sub-boxes Byjr = [xi—1, %] X [yj-1,Y;] X
[2k_1, 2] of equal volume AV = AzAyAz,

l m n

® (7, Yijrs Ziyx) 18 an arbitrary point in By, and Z ZZf(xfjk,yfjk,zfjk)AV is called a
i=1 j=1 k=1
triple Riemann sum of f on B.

Fubini’s Theorem If f is continuous on B = [a,b] X [¢,d] X [r, s], then

///Bf(wﬂ)dv = /ab/cd/rsf(l‘,y,z)dzdydx:/ab/rs/cdf(x,y,z)dydzdx
— /Cd/:/abf(x,y,z)dxdzdy:/Cd/ab/:f(x,y,z)dzdxdy
- /Ts/cd/abf(x,y,z)d:vdydz:/Ts/ab/cdf(x,y,z)dydxdz

Example (a) If £ = {(z,y,2) | (z,y) € D, wi(z,y) < z < us(z,y)}, where uy and us are
continuous functions on D, and D = {(z,y) | a < x < b, gi1(z) < y < go(x)}, where g1 and go
are continuous functions on [a, b], and if f is continuous on FE, then

z

Z= (X, Y)
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uz(z,y) b uz(:py
// flz,y,2)dV = // / flz,y,2)dz| dA :/ / / (x,y,2)dzdy dz.
E D | Jui(z,y) a Jgi( u1(w,y)

Example (b) If E = {(z,y,2) | (z,y) € D, ui(z,y) < z < us(z,y)}, where u; and uy are
continuous functions on D, and D = {(z,y) | ¢ <y < d, hi(y) < x < hy(y)}, where hy and hs
are continuous functions on [c, d], and if f is continuous on F, then

A

0 c

d
/ / y
X D D

u2(z,y) ha(y)  fua(z,y)
// flx,y,2z)dV = // / (r,y,2)dz| dA = / / / (z,y,2)dzdz dy.
uy ha(y

Example (c) If £ = {(z,y,2) | (z,2) € D, wi(z,2) <y < ug(z,2)}, where uy and uy are
continuous functions on D, then

dA.

[l sera= JL [ o

Examples

1. Evaluate /// ryz*dV, where B = {(z,y,2) |0 <z <1, -1 <y <2, 0<2<3}.
B
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V4

2. Evaluate / / / zdV, where FE is the solid in the first octant bounded by the surface z = 12zy
E
and the planes y =z, z = 1. [Hint: FE={0<2<1,0<y <z, 0<z<12zy}.]

1
3. Express the iterated integral / / / f(z,y,2)dzdydx as a triple integral and rewrite
0

it in the following order.

[N
Il
=t

D,

0 1 X 0 1 y 0 1 X
(a) Integrate first with respect to z, then z, and then y. [Solution: fo I f\[ z,y, 2) dz dz dy]

(b) Integrate first with respect to y, then x, and then z. [Solution: fo fﬁ fo (z,y,2)dydxdz]
4. Use a triple integral to find the volume of the tetrahedron T bounded by the planes x +

2y+2=22=2y,x=0,and z = 0. [Solution: V(T fo f;/_;ﬂ f2 " 4z dy da)
0,0,2)
=2y x+2y+z=2 "
s { 11 ’(oJrryz}:lE x/2)
i - <
0 0.L0) (i)

5. Let E be a solid lies within the cylinder 2* +y* = 1, to the right of the zz-plane, below the
plane z = 4, and above the paraboloid z = 1 — 2? — 4%, and let & > 0 be a constant and let

p(x,y, z) = k\/2? + y? be the density at (z,y,2) € E.

In terms of the cylindrical coordinates (7,0, z), E is given by
E={(r0,2)|0<0<m0<r<1,1-7r><z<4},

and the (total) mass m(FE) of E is given by

1= [ tnra~ f[faeav = [ [ [ s
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. z=4
(0,0,4) i/

0,0, 1)

Spherical Coordinates

The spherical coordinates (p,#, ¢) of a point P = (x,y, 2z) € R?® are defined by the equations

P(p, 0, P)

= psingcosl, y=psingsing, z=pcos¢p = p* = a® +y*> + 2%,

where p > 0 is the distance from P to the origin O = (0,0,0), 0 < ¢ < 7 is the angle from
positive z-axis to OP, and 0 < 6 < 27 is the angle from positive z-axis to the projection of OP
onto the xy-plane.

Triple Integrals in Spherical Coordinates

To define / / / f(x,y,2z)dV in the spherical coordinates, we divide E into smaller spherical
E

wedges I, by means of equally spaced spheres p = p;, half-planes 6 = 6; and half-cones ¢ = ¢y,
so that E;;;, is approximately a rectangular box with dimensions

® Ap=pit1— pi
e p;A¢ = arc of a circle with radius p;, angle Ag,

e p; sin ¢, Al = arc of a circle with radius p; sin ¢ and angle A6.
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Ap
p; sin ¢, Af /

y

0l¢

Af

( /r,-AG—p,—sinqbk Af

rp = p;sing,

\ ri AQ = p; sin ¢y Af

I = p; sin ¢y

Then the volume AVjj; of E;j; is approximately
AViji = (Ap) (piA¢) (pisin ¢ A0) = pi sin ¢, Ap A Ag

and by choosing a point (274, yij1, Zijk) € Eijk,

//Ef(x,y,z)dv

4 m n
. 3 * * *
= lim E E E f(mijkayijkazijk)A‘/ijk
£, m, n—o00

i=1 j=1 k=1

{ m n
= lim Z Z Z f(p:sin br oS 0], p; sin Op sin 0], p; cos qbk) sin ¢ Ap A0 A

£, m,n—00 4 -
i=1 j=1 k=1

Theorem If F is a spherical wedge
E={(p0,0)|a<p<ba<f<p c<o<dl

where a > 0, f — a < 27 and d — ¢ < 7, and if f is a continuous function on F, then

d B rb
//Ef(x,y,z)d‘/:/c/a/af(psinqbcos@,psingbsin@,pcosgb),02singbdpd@dgb.

Example Use spherical coordinates to find the volume of the solid that lies above the cone
z = y/22 + y2 and below the sphere 2% + y* + 2* = 2. [Hint: E = {(p,0,¢) | 0 < < 27,0 <
¢ <m/4,0<p<cos¢}and V(E)=m/8]

Change of Variables in Multiple Integrals
Recall that

e if f is a continuous function defined on [ ,bl, g ¢ [e,d] — [a,b] is a continuously differentiable
function with a = g(c), b = g(d), and ¢'(u) > 0 for all u € (¢, d), then

/f dx—/f du<:>/f dx—/f —du
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e S is abounded closed region in the rf-plane that corresponds to the region R in the xy-plane
by the transformation

x=rcosf and y=rsinf forall (r,0) €S,

and if f is a continuous function defined on R, then
// flz,y)dxdy = // f(rcos@,rsind)rdrdf.
R S

Change of Variables in Multiple Integrals If S is a bounded closed region in the uv-plane
that corresponds to the region R in the xy-plane by a continuously differentiable, one-to-one
onto transformation T : S — R defined by

(x,y) =T(u,v) = (x(u,v),y(u,v)) for all (u,v) € S.

0 u 0 b

Suppose that f is a continuous function defined on R, then

[[swntrar= [] stemiras= [ o). n) ]ggy;

du dwv,

J(x,
where Jp(u,v) = ng/ yi is called the Jacobian of T" at (u,v) which is defined by
)(u, v
ou Ov ou Ov
8(x, y) — = the determinant of
N oy Oy
ou Ov ou Ov

Area of a Parametrized Surface When R = r(S) C R?® is a surface parametrized by the
vector function r : S — R, we can approximate the image region R = r(S) by a parallelogram
determined by the secant vectors

a = r(up + Au,vg) — r(ug,vg), b= r(ug,ve+ Av) —r(ug, o).

Since

r(ug + Au, vg) — r(ug, vg)

Ty = Alqiglo A = r(up + Au,vg) — r(ug, vo) = Aur,,
Av) —
r = lim T(u()aUO + U) T(u()yvo) _— r(uO’ Vo + A’U) — r(uo’ UO) ~ Av Ty
Au—0 Au
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T (g, Uy + AD)

y

T (uy + Au,vy)

T (Ug, Vo)

we can approximate R by a parallelogram determined by the vectors Aur, and Avr, shown in
the following

Therefore we can approximate the area of R by the area of this parallelogram
[(Aury,) X (Avr,)| = |ry X o] AuAv

where the cross product r, x r, is given by

i j k
ox Oy Oxr Ox
Ty X T @3_1‘0 %%k%%k
R Ou v or 0Oy oy Jy
o oy | oo ool lou oo
ou Ov

and the determinant that arises in this calculation is called the Jacobian of the transformation.
Examples
(1) Evaluate
r—y
// erty dA, where E ={(z,y) |2 >0,y >0, z+y <1}
E

v
1
5(u+v)
y=s3v—u
u
Solution Let u =2 —y, v =2 +y. Then x = u—gv,y: v;u and since (z,y) € R when

r>0,y>0andr+y<1 <= u+v>0,v—u>0and 0<v < 1.
If we set
S={(u,v) [u+v>0,v—u>0,0<v<1} ={(u,v) |[u>-v,v>u0<0v <1},

we can define T': S — R by

u+v v—u
2 )

(z,y) = T(u,v) = ( ) for each (u,v) € S.

Page 15



Calculus Study Guide 13 (Continued)

Since
or 0s| |11
ou Ov 2 2 1 1
Jr(u,v) = = =3 = |Jr(u,v)| = 3
9y oyl |11
ou Ov
we have

z—y z(u,v) —y(u,v)
// erty dA = // @(uv)+y(uv) |JTuv]dA // dudv
R

1

_ /( )]Z_”vdv—/ ”(a——) dv
0 0 2 e

I OUE A TS A

4 )T a\" ")

(2) Find the volume V inside the paraboloid z = 2?4y for0< 2 <1.
Solution Using vertical slices, we see that

:// (1—z)dA:// (1—(2®+y?) dA, where R={(z,y) | 0 <2®+y* <1}
R R
Ifwelet S={(r,0)|0<r<1,0<6<2r}andlet T:S — R be defined by

(x,y) =T(r,0) = (7“ cosf, r sin (9) for each (r,0) € S,

then
or Ox
o 00 cos) —rsind
Jr(r,0) = = =r = |Jp(r,0)| =r,
@ @ sinf  rcosf
or 060
and

21 1 2w 1 2m T2 T
v o= / /(1—r2)]JT(r,6)|drd€—/ /(r—r3)drd9—/ T o
0 0 0 2 4
27‘(’1
_/0 ZdG_Q

(3) Find the volume V inside the cone z = /22 4+ y2 for 0 < 2 < 1.
Solution Using vertical slices, we see that

= [[a=snaa= [[ (=) an whee k= (@) [0< 2+ <1

Ifwelet S={(r,0)]0<r<1,0<6<2r}andlet T:S — R be defined by
(z,y) =T(r,0) = (r cosf, r sinf) for each (r,0) € S,

then

27 2 2 r r
Vo= / / 1—7“]JT7"9]d7"d0—/ / r—r drd&—/ <———)\Od¢9
o Jo 0 2 3
1
= Sdp ==
/0 6 3
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Calculus Study Guide 13 (Continued)

4) For a > 0, find the volume V inside the sphere z* + v + 22 = o>
( , p y
Solution Let

S = {(p¢,0)|0<p<a,0<¢p<m0<6< 2},
R = {(z,y,2) |0 <a® +¢* + 2% <a?}

and for each (p,¢,0) € S'let T : S — R be defined by

(z,y,2) =T(p,$,0) = (p sing cosb, psing sinf, p cos¢).

Then
dp dp 00 sing cosf pcos¢ cos —p sing sind
|0y oy Oy | . : . .
Jr(p, ¢,0) = op 96 00| sing sinf  p cos¢ sinf  p sin ¢ cos
9x 9 Oz cos ¢ —p sin ¢ 0
dp 0¢ 00
= cos¢|[p”sin ¢ cos ¢(cos § + sin® 0)] + psin ¢ [psin® ¢(cos® 6 + sin® §)]
= p?sin¢(cos? ¢ + sin? @) = p?sin ¢,
and

Vo= ///dV / // \Jr(p, 6,0 |dpd¢d0—/ //ps1n¢dpd¢d9
- / / ( >|0sm¢d¢de_/0ﬂ%( cos¢)|0d0—/02ﬂ2%d9

2a°0 o,  Ama®

3 ' 3
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