
Calculus Study Guide 13 Spring 2022

Multiple Integrals

Definition Let R = [a, b] × [c, d] = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d} be a closed rectangle

and let f be a function defined on R. Then the double integral of f over R, denoted

∫∫
R

f dA

or simply

∫
R

f dA, is defined by

∫∫
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A if the limit exists,

⇐⇒ For any ε > 0 there is an integer N such that

if m, n ≥ N, then |
∫∫

R

f(x, y) dA−
m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A| < ε

where

� the interval [a, b] is divided into m subintervals [xi−1, xi] of equal width ∆x = (b − a)/m
and the interval [c, d] is divided into n subintervals [yj−1, yj] of equal width ∆y = (d− c)/n,

� the rectangle R is divided into m×n subrectangles Rij = [xi−1, xi]× [yj−1, yj] of equal area
∆A = ∆x∆y,

� (x∗
ij, y

∗
ij) is an arbitrary point in Rij and

m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A is called a double Riemann

sum of f on R.

Definition A function f is called integrable on R if f is bounded on R and the limit of double
Riemann sum exists. [Recall that f is bounded on R if there is a constantM such that |f(x, y)| ≤
M for all (x, y) ∈ R]

Theorem Let f be a bounded function defined on R = [a, b] × [c, d]. If f is continuous on
R = [a, b]× [c, d] except on possibly a finite number of smooth curves, then f is integrable on R.

Fubini’s Theorem If f is continuous on R = [a, b]× [c, d], then∫∫
R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy,
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where

∫ b

a

∫ d

c

f(x, y) dy dx and

∫ d

c

∫ b

a

f(x, y) dx dy are called iterated integrals defined by∫ b

a

∫ d

c

f(x, y) dy dx =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

and

∫ d

c

f(x, y) dy means that f(x, y) is integrated with respect to y from y = c to y = d while

x is held fixed (as a constant).

Examples Compute each of the following double integrals over the indicated rectangles.

(1.)

∫∫
R

6xy2 dA, R = [2, 4]× [1, 2].

(2.)

∫∫
R

2x− 4y3 dA, R = [−5, 4]× [0, 3].

(3.)

∫∫
R

x2y2 + cos(πx) + sin(πy) dA, R = [−2,−1]× [0, 1].

(4.)

∫∫
R

1

(2x+ 3y)2
dA, R = [0, 1]× [1, 2].

(5.)

∫∫
R

xexy dA, R = [−1, 2]× [0, 1].

Definition Let D ⊂ R2 be a bounded subset, f : D → R be a function defined on D, R =
[a, b]× [c, d] = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d} be a closed rectangle containing D, and let
F be a function on R defined by

F (x, y) =

{
f(x, y) if (x, y) ∈ D

0 if (x, y) ∈ R \D i.e. (x, y) is in R but not in D

Then we say that f is integrable on D if F is integrable on R = [a, b]× [c, d]. If F is integrable
over R, then we define the double integral of f over D by∫∫

D

f(x, y) dA =

∫∫
R

F (x, y) dA.

Example Let D be a plane region bounded between the graphs of two continuous functions of
x, that is,

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} where h1, h2 are continuous on [a, b].
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In order to evaluate

∫∫
D

f(x, y) dA, we choose a rectangle R = [a, b]× [c, d], and use the Fubini’s

Theorem to obtain that

∫∫
D

f(x, y) dA =

∫∫
R

F (x, y) dA =

∫ b

a

∫ d

c

F (x, y) dy dx =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

Theorem Let D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}, where g1 and g2 are continuous
functions on [a, b]. If f is a continuous function on D, then f is integrable on D with the integral
of f on D given by ∫∫

D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

Example Let D be a plane region bounded between the graphs of two continuous functions of
y, that is,

D = {(x, y) | c ≤ x ≤ d, h1(y) ≤ x ≤ h2(y)}, where h1, h2 are continuous on [c, d].

Theorem Let D = {(x, y) | c ≤ x ≤ d, h1(y) ≤ x ≤ h2(y)}, where h1 and h2 are continuous
functions on [c, d]. If f is a continuous function on D, then f is integrable on D with the integral
of f on D given by ∫∫

D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy.
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Examples

(1) Evaluate

∫∫
D

dA, where D is the region bounded by the parabolas y = 2x2 and y = 1+x2.

(2) Evaluate the iterated integral

∫ 1

0

∫ 1

x

sin(y2) dy dx.

(3) Evaluate

∫ 1

0

∫ 1

x

ey
2

dy dx. [Hint: (2) and (3) have the same integration region D = {x ≤

y ≤ 1, 0 ≤ x ≤ 1} = {0 ≤ x ≤ y, 0 ≤ y ≤ 1}]

(4) Evaluate

∫ π/2

0

∫ π/2

x

sin y

y
dy dx. [Hint: the integration region D = {x ≤ y ≤ π/2, 0 ≤ x ≤

π/2} = {0 ≤ x ≤ y, 0 ≤ y ≤ π/2}]

Properties of Double Integrals Let D ⊂ R2 be a bounded subset, let f, g : D → R be
integrable functions on D. Then

�

∫∫
D

[f(x, y) + g(x, y)] dA =

∫∫
D

f(x, y) dA+

∫∫
D

g(x, y) dA.

�

∫∫
D

cf(x, y) dA = c

∫∫
D

f(x, y) dA, where c is a constant.

� if f(x, y) ≥ g(x, y) for all (x, y) ∈ D, then∫∫
D

f(x, y) dA ≥
∫∫

D

g(x, y) dA.

� if D = D1 ∪D1, where D1 and D2 do not overlap except perhaps on their boundaries, then∫∫
D

f(x, y) dA =

∫∫
D1

f(x, y) dA+

∫∫
D2

f(x, y) dA.

� if f(x, y) = 1 is integrable on D, then

∫∫
D

dA = A(D), the area of D.
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� if f(x, y) is integrable on D and if m ≤ f(x, y) ≤ M for all (x, y) ∈ D, then

mA(D) ≤
∫∫

D

f(x, y) dA ≤ MA(D).

Double Integrals in Polar Coordinates

Let P be a point in the xy-plane and let (x, y) and (r, θ) denote the rectangular and polar
coordinates of p, respectively. Then (x, y) and (r, θ) are related by the equations

r2 = x2 + y2, x = r cos θ, y = r sin θ.

To compute the double integral

∫∫
R

f(x, y) dA, where R is a polar region of the form

R = {(r, θ) | 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β ≤ 2π},

� we divide the interval [a, b] into m subintervals [ri−1, ri] of equal width ∆ri = ∆r =
b− a

m
,

� we divide the interval [α, β] into n subintervals [θj−1, θj] of equal width ∆θj = ∆θ =
β − α

n
,

� we divide R into m× n subregions

Rij = {(r, θ) | ri−1 ≤ r ≤ ri, θj−1 ≤ θ ≤ θj}

with the “center” of the coordinates

r∗i =
ri−1 + ri

2
, θ∗j =

θj−1 + θj
2

⇐⇒ (x∗
i , y

∗
j ) = (r∗i cos θ

∗
j , r

∗
i sin θ

∗
j )

and of the area

∆Aij = A(Rij) =
1

2
r2i (θj − θj−1)−

1

2
r2i−1(θj − θj−1) =

(ri + ri−1)(ri − ri−1)

2
∆θ = r∗i∆r∆θ
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Therefore we have∫∫
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(r∗i cos θ
∗
j , r

∗
i sin θ

∗
j )∆Aij

= lim
m,n→∞

m∑
i=1

n∑
j=1

f(r∗i cos θ
∗
j , r

∗
i sin θ

∗
j ) r

∗
i ∆r∆θ

=

∫ β

α

∫ b

a

f(r cos θ, r sin θ) r dr dθ

Theorem If f is continuous on R = {(r, θ) | 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β}, where 0 ≤ β − α ≤ 2π,
then ∫∫

R

f(x, y) dA =

∫ β

α

∫ b

a

f(r cos θ, r sin θ) r dr dθ.

Theorem Let h2(θ) ≥ h1(θ) ≥ 0 be continuous for each θ ∈ [α, β]. If f is continuous on a polar
region of the form

D = {(r, θ) | 0 ≤ α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)},

then ∫∫
D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos θ, r sin θ) r dr dθ.
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Examples

(1) Evaluate

∫∫
R

(3x+ 4y2) dA, where R is the region in the upper half-plane bounded by the

circles x2 + y2 = 1 and x2 + y2 = 4.

(2) Evaluate

∫∫
R

e−x2−y2 dA, where R = (−∞,∞)× (−∞,∞) = {(x, y) | −∞ < x, y < ∞}.

(3) Evaluate

∫ ∞

−∞
e−x2

dx. Hint: Since

∫ ∞

−∞
e−x2

dx =

∫ ∞

−∞
e−y2 dy, and x, y are independent

variables, we have(∫ ∞

−∞
e−x2

dx

)2

=

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2 dy

)
=

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2 dx dy

Definition Let D ⊂ R2 be a bounded subset with area A(D) =

∫∫
D

dA, and let f : D → R be

an integrable function on D. Then the average value of f over D is defined to be

fave =
1

A(D)

∫∫
D

f(x, y) dA.

Theorem Let Br(p) ⊂ R2 be a disk of radius r > 0 and center p ∈ R2, and let f : Br(p) → R
be a continuous function on Br(p). Then

lim
ρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

f(x, y) dA = f(p).

Proof Since

�

1

A(Bρ(p))

∫∫
Bρ(p)

dA = 1 for all ρ > 0 =⇒ lim
ρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

dA = 1,

� f(p) = f(p) · 1 = f(p) · lim
ρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

dA = lim
ρ→0

1

A(Bρ(p))

∫
Bρ(p)

f(p) dx,

� f is continuous at p ⇐⇒ lim
(x,y)→p

f(x, y) = f(p), that is, for any ε > 0, there is a 0 < δ < r

such that
if (x, y) ∈ Bδ(p) then |f(x, y)− f(p)| < ε,

so for all 0 < ρ < δ, we have∣∣∣∣∣limρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

f(x, y) dA− f(p)

∣∣∣∣∣ =

∣∣∣∣∣limρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

[f(x, y)− f(p)] dA

∣∣∣∣∣
≤ lim

ρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

|f(x, y)− f(p)| dA

< lim
ρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

ε dA since (x, y) ∈ Bρ(p) ⊂ Bδ(p)

= ε.

Since ε > 0 is arbitrary, we have

lim
ρ→0

1

A(Bρ(p))

∫∫
Bρ(p)

f(x, y) dA = f(p).
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Surface Area

Let S = {(x, y, z) | z = f(x, y) and (x, y) ∈ D} be a surface with equation z = f(x, y), where f
has continuous partial derivatives. For simplicity in deriving the surface area formula, we assume
that f(x, y) ≥ 0 and the domain D of f is a rectangle.

� Divide the rectangle D into small rectangles Rij with area ∆A = ∆x∆y.

� If (xi, yj) is the corner of Rij closest to the origin, let Pij(xi, yj, f(xi, yj)) be the point on S
directly above it.

� Approximate the area ∆Sij of the part of S that lies directly above Rij by the area ∆Tij of
the part of the tangent plane (a parallelogram) to S at Pij lies directly above Rij.

� Define the surface area of S to be

A(S) = lim
m,n→∞

m∑
i=1

n∑
j=1

∆Tij if the limit exists,

� Apply the linear (or tangent) approximations at (xi, yj) to get

(xi +∆x, yj, f(xi +∆x, yj))− (xi, yj, f(xi, yj)) ≈ (∆x, 0, fx(xi, yj)∆x) = a,

(xi, yj +∆y, f(xi, yj +∆y))− (xi, yj, f(xi, yj)) ≈ (0,∆y, fy(xi, yj)∆y) = b,

∆Tij = |a× b| = | (−fx(xi, yj), −fy(xi, yj), 1) ∆x∆y|

=
√
[fx(xi, yj)]2 + [fy(xi, yj)]2 + 1∆x∆y,

So, if fx and fy are continuous on D, then the area of the surface with equation z = f(x, y),
(x, y) ∈ D, is given by

A(S) =

∫∫
D

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA

Example Find the surface area of the part of the surface z = x2 + 2y + 2 that lies above the
triangular region T = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x} in the xy-plane with vertices (0, 0), (1, 0),
and (1, 1).
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Triple Integrals

Definition Let B = [a, b]× [c, d]× [r, s] = {(x, y, z) ∈ R3 | a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s} be
a closed rectangular box and let f be a function defined on B. Then the triple integral of f over

B, denoted

∫∫∫
B

f dV or simply

∫
B

f dV, is defined by

∫∫∫
B

f(x, y, z) dV = lim
ℓ,m, n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V if the limit exists,

⇐⇒ For any ε > 0 there is an integer N such that if ℓ, m, n ≥ N, then

|
∫∫∫

B

f(x, y) dV −
ℓ∑

i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V | < ε

where

� the interval [a, b] is divided into ℓ subintervals [xi−1, xi] of equal width ∆x = (b− a)/ℓ, the
interval [c, d] is divided into m subintervals [yj−1, yj] of equal width ∆y = (d − c)/m, and
the interval [r, s] is divided into n subintervals [zk−1, zk] of equal width ∆z = (s− r)/n,

� the rectangular box B is divided into ℓ × m × n sub-boxes Bijk = [xi−1, xi] × [yj−1, yj] ×
[zk−1, zk] of equal volume ∆V = ∆x∆y∆z,

� (x∗
ijk, y

∗
ijk, z

∗
ijk) is an arbitrary point in Bijk and

ℓ∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V is called a

triple Riemann sum of f on B.

Fubini’s Theorem If f is continuous on B = [a, b]× [c, d]× [r, s], then∫∫∫
B

f(x, y, z) dV =

∫ b

a

∫ d

c

∫ s

r

f(x, y, z) dz dy dx =

∫ b

a

∫ s

r

∫ d

c

f(x, y, z) dy dz dx

=

∫ d

c

∫ s

r

∫ b

a

f(x, y, z) dx dz dy =

∫ d

c

∫ b

a

∫ s

r

f(x, y, z) dz dx dy

=

∫ s

r

∫ d

c

∫ b

a

f(x, y, z) dx dy dz =

∫ s

r

∫ b

a

∫ d

c

f(x, y, z) dy dx dz

Example (a) If E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}, where u1 and u2 are
continuous functions on D, and D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}, where g1 and g2
are continuous functions on [a, b], and if f is continuous on E, then
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∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA =

∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)

f(x, y, z) dz dy dx.

Example (b) If E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}, where u1 and u2 are
continuous functions on D, and D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}, where h1 and h2

are continuous functions on [c, d], and if f is continuous on E, then

∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA =

∫ d

c

∫ h2(y)

h1(y)

∫ u2(x,y)

u1(x,y)

f(x, y, z) dz dx dy.

Example (c) If E = {(x, y, z) | (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)}, where u1 and u2 are
continuous functions on D, then

∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA.

Examples

1. Evaluate

∫∫∫
B

xyz2 dV, where B = {(x, y, z) | 0 ≤ x ≤ 1, −1 ≤ y ≤ 2, 0 ≤ z ≤ 3}.
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2. Evaluate

∫∫∫
E

z dV, where E is the solid in the first octant bounded by the surface z = 12xy

and the planes y = x, x = 1. [Hint: E = {0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 12xy}. ]

3. Express the iterated integral

∫ 1

0

∫ x2

0

∫ y

0

f(x, y, z) dz dy dx as a triple integral and rewrite

it in the following order.

(a) Integrate first with respect to x, then z, and then y. [Solution:
∫ 1

0

∫ y

0

∫ 1√
z
f(x, y, z) dx dz dy]

(b) Integrate first with respect to y, then x, and then z. [Solution:
∫ 1

0

∫ 1√
z

∫ x2

0
f(x, y, z) dy dx dz]

4. Use a triple integral to find the volume of the tetrahedron T bounded by the planes x +

2y + z = 2, x = 2y, x = 0, and z = 0. [Solution: V (T ) =
∫ 1

0

∫ 1−x/2

x/2

∫ 2−x−2y

0
dz dy dx]

5. Let E be a solid lies within the cylinder x2+ y2 = 1, to the right of the xz-plane, below the
plane z = 4, and above the paraboloid z = 1− x2 − y2, and let k > 0 be a constant and let
ρ(x, y, z) = k

√
x2 + y2 be the density at (x, y, z) ∈ E.

In terms of the cylindrical coordinates (r, θ, z), E is given by

E = {(r, θ, z) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 1, 1− r2 ≤ z ≤ 4},

and the (total) mass m(E) of E is given by

m(E) =

∫∫∫
E

ρ(x, y, z) dV =

∫∫∫
E

kr dV =

∫ π

0

∫ 1

0

∫ 4

1−r2
kr2 dz dr dθ.
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Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P = (x, y, z) ∈ R3 are defined by the equations

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ =⇒ ρ2 = x2 + y2 + z2,

where ρ ≥ 0 is the distance from P to the origin O = (0, 0, 0), 0 ≤ ϕ ≤ π is the angle from
positive z-axis to OP, and 0 ≤ θ ≤ 2π is the angle from positive x-axis to the projection of OP
onto the xy-plane.

Triple Integrals in Spherical Coordinates

To define

∫∫∫
E

f(x, y, z) dV in the spherical coordinates, we divide E into smaller spherical

wedges Eijk by means of equally spaced spheres ρ = ρi, half-planes θ = θj and half-cones ϕ = ϕk,
so that Eijk is approximately a rectangular box with dimensions

� ∆ρ = ρi+1 − ρi,

� ρi∆ϕ = arc of a circle with radius ρi, angle ∆ϕ,

� ρi sinϕk∆θ = arc of a circle with radius ρi sinϕk and angle ∆θ.
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Then the volume ∆Vijk of Eijk is approximately

∆Vijk ≈ (∆ρ) (ρi∆ϕ) (ρi sinϕk∆θ) = ρ2i sinϕk ∆ρ∆θ∆ϕ

and by choosing a point (x∗
ijk, y

∗
ijk, z

∗
ijk) ∈ Eijk,

∫∫∫
E

f(x, y, z) dV

= lim
ℓ,m, n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆Vijk

= lim
ℓ,m, n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f(ρ∗i sin ϕ̃k cos θ̃j, ρ
∗
i sin ϕ̃k sin θ̃j, ρ

∗
i cos ϕ̃k)ρ

2
i sinϕk ∆ρ∆θ∆ϕ

Theorem If E is a spherical wedge

E = {(ρ, θ, ϕ) | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d},

where a ≥ 0, β − α ≤ 2π and d− c ≤ π, and if f is a continuous function on E, then∫∫∫
E

f(x, y, z) dV =

∫ d

c

∫ β

α

∫ b

a

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ dρ dθ dϕ.

Example Use spherical coordinates to find the volume of the solid that lies above the cone
z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z. [Hint: E = {(ρ, θ, ϕ) | 0 ≤ θ ≤ 2π, 0 ≤

ϕ ≤ π/4, 0 ≤ ρ ≤ cosϕ} and V (E) = π/8.]

Change of Variables in Multiple Integrals

Recall that

� if f is a continuous function defined on [a, b], g : [c, d] → [a, b] is a continuously differentiable
function with a = g(c), b = g(d), and g′(u) > 0 for all u ∈ (c, d), then∫ b

a

f(x) dx =

∫ d

c

f(g(u)) g′(u) du ⇐⇒
∫ b

a

f(x) dx =

∫ d

c

f(x(u))
dx

du
du.

Page 13



Calculus Study Guide 13 (Continued)

� S is a bounded closed region in the rθ-plane that corresponds to the region R in the xy-plane
by the transformation

x = r cos θ and y = r sin θ for all (r, θ) ∈ S,

and if f is a continuous function defined on R, then∫∫
R

f(x, y) dx dy =

∫∫
S

f(r cos θ, r sin θ) r dr dθ.

Change of Variables in Multiple Integrals If S is a bounded closed region in the uv-plane
that corresponds to the region R in the xy-plane by a continuously differentiable, one-to-one
onto transformation T : S → R defined by

(x, y) = T (u, v) = (x(u, v), y(u, v)) for all (u, v) ∈ S.

Suppose that f is a continuous function defined on R, then∫∫
R

f(x, y) dx dy =

∫∫
T (S)

f(x, y) dx dy =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv,
where JT (u, v) =

∂(x, y)

∂(u, v)
is called the Jacobian of T at (u, v) which is defined by

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ = the determinant of


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 .

Area of a Parametrized Surface When R = r(S) ⊂ R3 is a surface parametrized by the
vector function r : S → R, we can approximate the image region R = r(S) by a parallelogram
determined by the secant vectors

a = r(u0 +∆u, v0)− r(u0, v0), b = r(u0, v0 +∆v)− r(u0, v0).

Since

ru = lim
∆u→0

r(u0 +∆u, v0)− r(u0, v0)

∆u
=⇒ r(u0 +∆u, v0)− r(u0, v0) ≈ ∆u ru,

rv = lim
∆u→0

r(u0, v0 +∆v)− r(u0, v0)

∆u
=⇒ r(u0, v0 +∆v)− r(u0, v0) ≈ ∆v rv,
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we can approximate R by a parallelogram determined by the vectors ∆u ru and ∆v rv shown in
the following

Therefore we can approximate the area of R by the area of this parallelogram

|(∆u ru)× (∆v rv)| = |ru × rv|∆u∆v

where the cross product ru × rv is given by

ru × rv =

∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂x

∂u

∂x

∂v
0

∂y

∂u

∂y

∂v
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ k =

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ k

and the determinant that arises in this calculation is called the Jacobian of the transformation.

Examples

(1) Evaluate ∫∫
E

e
x−y
x+y dA, where E = {(x, y) | x ≥ 0, y ≥ 0, x+ y ≤ 1}.

y

x

E

1

1

0

x+ y = 1

x = 1
2
(u+ v)

y = 1
2
(v − u)

v

u
1−1

1

u = vu = −v

0

S

Solution Let u = x− y, v = x+ y. Then x =
u+ v

2
, y =

v − u

2
and since (x, y) ∈ R when

x ≥ 0, y ≥ 0 and x+ y ≤ 1 ⇐⇒ u+ v ≥ 0, v − u ≥ 0 and 0 ≤ v ≤ 1.

If we set

S = {(u, v) | u+ v ≥ 0, v − u ≥ 0, 0 ≤ v ≤ 1} = {(u, v) | u ≥ −v, v ≥ u, 0 ≤ v ≤ 1},

we can define T : S → R by

(x, y) = T (u, v) =
(u+ v

2
,
v − u

2

)
for each (u, v) ∈ S.
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Since

JT (u, v) =

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

1

2

1

2

−1

2

1

2

∣∣∣∣∣∣∣∣∣ =
1

2
=⇒ |JT (u, v)| =

1

2
,

we have ∫∫
R

e
x−y
x+y dA =

∫∫
S

e
x(u,v)−y(u,v)
x(u,v)+y(u,v) |JT (u, v)| dA =

∫ 1

0

∫ v

−v

eu/v
1

2
du dv

=

∫ 1

0

(v
2
eu/v

)
|u=v
u=−v dv =

∫ 1

0

v

2

(
e− 1

e

)
dv

=
v2

4

(
e− 1

e

)
|10 =

1

4

(
e− 1

e

)
.

(2) Find the volume V inside the paraboloid z = x2 + y2 for 0 ≤ z ≤ 1.

Solution Using vertical slices, we see that

V =

∫∫
R

(1− z) dA =

∫∫
R

(
1− (x2 + y2)

)
dA, where R = {(x, y) | 0 ≤ x2 + y2 ≤ 1}.

If we let S = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} and let T : S → R be defined by

(x, y) = T (r, θ) =
(
r cos θ , r sin θ

)
for each (r, θ) ∈ S,

then

JT (r, θ) =

∣∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = r =⇒ |JT (r, θ)| = r,

and

V =

∫ 2π

0

∫ 1

0

(1− r2) |JT (r, θ)| dr dθ =

∫ 2π

0

∫ 1

0

(r − r3) dr dθ =

∫ 2π

0

(
r2

2
− r4

4

)
|10 dθ

=

∫ 2π

0

1

4
dθ =

π

2
.

(3) Find the volume V inside the cone z =
√

x2 + y2 for 0 ≤ z ≤ 1.

Solution Using vertical slices, we see that

V =

∫∫
R

(1− z) dA =

∫∫
R

(
1−

√
x2 + y2)

)
dA, where R = {(x, y) | 0 ≤ x2 + y2 ≤ 1}.

If we let S = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} and let T : S → R be defined by

(x, y) = T (r, θ) =
(
r cos θ , r sin θ

)
for each (r, θ) ∈ S,

then

V =

∫ 2π

0

∫ 1

0

(1− r) |JT (r, θ)| dr dθ =

∫ 2π

0

∫ 1

0

(r − r2) dr dθ =

∫ 2π

0

(
r2

2
− r3

3

)
|10 dθ

=

∫ 2π

0

1

6
dθ =

π

3
.
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(4) For a > 0, find the volume V inside the sphere x2 + y2 + z2 = a2.

Solution Let

S = {(ρ, ϕ, θ) | 0 ≤ ρ ≤ a, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π},
R = {(x, y, z) | 0 ≤ x2 + y2 + z2 ≤ a2}

and for each (ρ, ϕ, θ) ∈ S let T : S → R be defined by

(x, y, z) = T (ρ, ϕ, θ) =
(
ρ sinϕ cos θ , ρ sinϕ sin θ , ρ cosϕ

)
.

Then

JT (ρ, ϕ, θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ρ

∂x

∂ϕ

∂x

∂θ

∂y

∂ρ

∂y

∂ϕ

∂y

∂θ

∂z

∂ρ

∂z

∂ϕ

∂z

∂θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ

sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

∣∣∣∣∣∣∣∣∣∣
= cosϕ

[
ρ2 sinϕ cosϕ(cos2 θ + sin2 θ)

]
+ ρ sinϕ

[
ρ sin2 ϕ(cos2 θ + sin2 θ)

]
= ρ2 sinϕ(cos2 ϕ+ sin2 ϕ) = ρ2 sinϕ,

and

V =

∫∫∫
S

dV =

∫ 2π

0

∫ π

0

∫ a

0

|JT (ρ, ϕ, θ)| dρ dϕ dθ =

∫ 2π

0

∫ π

0

∫ a

0

ρ2 sinϕ dρ dϕ dθ

=

∫ 2π

0

∫ π

0

(
ρ3

3

)
|a0 sinϕ dϕ dθ =

∫ 2π

0

a3

3
(− cosϕ) |π0 dθ =

∫ 2π

0

2a3

3
dθ

=
2a3θ

3
|2π0 =

4πa3

3
.
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